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Nature View of a Tree
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Computer Scientist’s View

leaves

branches

root

node



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

What is a Tree

• A tree is a finite 
nonempty set of 
elements.

• It is an abstract 
model of a  
hierarchical structure.

• It consists of nodes 
with a parent-child 
relation.

• Applications:

o Organization charts

o File systems
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Definition and Tree Trivia

Recursive Definition of a Tree:

• A tree is a set of nodes that is

o (a) an empty set of nodes, or

o (b) has one node called the root from which zero or more 

trees (subtrees) descend.

• A tree with 𝑁 nodes always has edges
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Tree Terminology
• Root: node without parent (A)

• Siblings: nodes share the same parent

• Internal node: node with at least one child (A, 
B, C, F)

• External node (leaf): node without children (E, 
I, J, K, G, H,  D)

• Ancestors of a node: parent, grandparent, 
grand-grandparent, etc.

• Descendant of a node: child, grandchild, grand-  
grandchild, etc.

• Depth of a node: number of ancestors

• Height of a node: number of edges on the 
longest path  from the node to a leaf

• Height/Depth of a tree: maximum depth of any 
node

• Degree of a node: the number of its children

• Degree of a tree: the maximum degree of its 
node.

• Subtree: tree consisting of a node and its 
descendants
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YMTT (Yet More Tree Terminology)

• Binary tree: each node has at most two children

• 𝑛-ary trere: each child has at most n children

• Complete tree: Each row of the tree is filled in left to 

right before the next one is started

• How deep can a complete binary tree (with n nodes) be?
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Tree ADT

• We use positions to 
abstract  nodes

• Query methods:

o integer size()

o boolean isEmpty()

o objectIterator 
elements()

o positionIterator 
positions()

o position root()

o position parent(p)

o positionIterator 
children(p)

• Update methods:

o insert(p)

o delete(p)

o swapElements(p, q)

o object replaceElement(p, o)

• Additional update methods 
may be defined by data 
structures  implementing 
the Tree ADT



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

A Tree Representation

• A node is represented by 
an object storing
o Element

o Parent node

o Sequence of children 
nodes

// A node of N-ary tree

struct node {

char element; 

node * parent; 

node * child[N];

};
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A Tree Representation
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Tree Traversals

• Walking through a tree is called a traversal

• Common kinds of traversal

o Pre-order: node, then children

o Post-order: children, then node

o In-order: left, then node, then right (specific to binary 

trees)

o Level-order: nodes at depth d, nodes at depth d+1, …
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Tree Traversals
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Tree Traversals

• Pre-order: 
 G D A F E M H Z
• Post-order:
 A E F D H Z M G
• In-order:
 A D E F G H M Z
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Tree Traversals

• Pre-order:
 A B D E G C F
• In-order:
 D B G E A C F
• Post-order:
 ?
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Pre-Order Traversal

• Perform computation at the node, then recursively 
perform  computation on each child
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Pre-Order Applications

• Use when computation at node depends upon values 
calculated  higher in the tree (closer to root)

• Example: computing depth
o The depth of a node is the number of edges from the node 

to the tree's root node

o depth(node) = 1 + depth( parent of node )
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Pre-Order Example: Computing Depth of All  Nodes

• Add a field depth to all nodes

• Call Depth(root,0) to set depth field
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Post-Order Traversal

• Recursively perform computation on each child, then 
perform  computation at node
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Post-Order Applications

• Use when computation at node depends on values 
calculated lower in tree (closer to leaves)

• Example: computing height
o The height of a node is the number of edges on the longest 

path from the node to a leaf.

o A leaf node will have a height of 0.

o height(node) = 1 + MAX( height(child1), … height(childk) )

• Example: size of tree rooted at node
o size(node) = 1 + size(child1) + … + size(childk)
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Post-Order Example: Computing Size of Tree

• Call Size(root) to compute number of nodes in tree
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Depth-First Search

• Pre-Order and Post-Order traversals are examples of 
depth-first  search:
o Nodes are visited deeply on left-most branches before any 

nodes are visited  on right-most branches

o NOTE: visiting right deeply before left would still be 
depth-first - crucial idea is “go deep first”

• In DFS the nodes “being worked on” are kept on a stack 
(where?)
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Level-Order (Breadth-First) Traversal

• Consider task of traversing tree level-by-level from top 

to bottom  (alphabetic order, in example below)
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Level-Order (Breadth-First) Traversal

• Consider task of traversing tree level-by-level from top 

to bottom  (alphabetic order, in example below)

• Which data structure can best keep track of nodes?
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Level-Order (Breadth-First) Algorithm

• Put root in a Queue

• Repeat until Queue is empty:

o Dequeue a node

o Process it

o Add its children to queue
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Level-Order Example: Printing the Tree

• Call Print(root) to print tree contents
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Example: Level-Order Queue

• Put root in a Queue

• Repeat until Queue is 
empty:
o Dequeue a node

o Process it

o Add its children to 
queue
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Example: Level-Order Queue
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Applications of Breadth-First Search

• Find shortest path from root to a given node N

o if node N is at depth k, BFS will never visit a node at 
depth > k

o important for really deep trees

• Generalizes to finding shortest paths in graphs

• Spidering the world wide web
o From a root URL, fetch pages that are farther and 

farther away
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Binary Search Tree

• Binary Search Trees (BST) are a type of Binary Trees 

with a special organization of data.

o Every element has a unique key.

o The keys in the nonempty left subtree (right subtree) are 

smaller (larger) than the key in the root of subtree (BST 

property)

o The left and right subtrees are also binary search trees.
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Binary Search Trees (BST)

• Insertion: insert(val)

typedef struct BinaryNode {  

 int key;

 BinaryNode *right;  

BinaryNode *left;

}ptnode;
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Insertion into a BST

void insert (ptnode * & node, int key){

 if (!node){

  node = (ptnode) malloc(sizeof(ptnode));  

  node->key = key;

  node->left = node->right = NULL;

} else if (key < node->key) 

{  

  insert(node->left, key);

} else if (key > node->key) 

{  

  insert(node->right, key);

}

}
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Finding a value in the BST if it exists: find(val)

• Follow left and right pointers until you find it or hit NULL.

Search in BST – Pseudocode

if the tree is empty
 return NULL
else if the item in the node equals the target
 return the node value
else if the item in the node is greater than the target  
 return the result of searching the left subtree
else if the item in the node is smaller than the target  
 return the result of searching the right subtree
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Search in a BST
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Finding the minimum element in a BST:  findmin()

• How?
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• Key is to just go left till you cannot go left anymore.

Finding the minimum element in a BST:  findmin()
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BST Operations: Removal

• uses a binary search to locate the target item:

o starting at the root it probes down the tree till it finds the 

target or reaches  NULL

• removal of a node must not leave a ‘gap’ in the tree,
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Removal in BST - Pseudocode

if the tree is empty return false

Attempt to locate the node containing the target using the 
binary search  

     if the target is not found return false

     else the target is found, so remove its node:

 Case 1: if the node has 2 empty subtrees

  ― replace the link in the parent with null

 Case 2: if the node has a left and a right subtree

  ― replace the node's value with the max value in 
     the left subtree

  ― delete the max node in the left subtree
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Removal in BST - Pseudocode

if the tree is empty return false

Attempt to locate the node containing the target using the 
binary search  

     if the target is not found return false

     else the target is found, so remove its node:

 Case 3: if the node has no left child

  ― link the parent of the node to the right (non- 
      empty) subtree

 Case 4: if the node has no right child

  ― link the parent of the target to the left (non- 
       empty) subtree
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Removal in BST: Example

9

7

5

64 8 10

Case 1: removing a node with 2 EMPTY SUBTREES

parent

cursor

Removing  4
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Removal in BST: Example

9

7

5

64 8 10

9

7

5

6 8 10

parent

cursor

Removing  4
replace the link in the 
parent with null

after 
removal

Case 1: removing a node with 2 EMPTY SUBTREES
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Removal in BST: Example

Case 2: removing a node with 2 SUBTREES

9

7

5

6 8 10

cursor

4

Removing 7
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Removal in BST: Example

9

7

5

6 8 10

9

6

5

8 10

cursor
cursor

o replace the node's value with the max value in the left subtree
o delete the max node in the left subtree

44

Removing 7

after removal

Case 2: removing a node with 2 SUBTREES



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

6 8 10

9

6

5

8 10

cursor
cursor

44

Removing 7

What element else
can be used as 
replacement?

o replace the node's value with the max value in the left subtree
o delete the max node in the left subtree

Case 2: removing a node with 2 SUBTREES

after removal
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Removal in BST: Example

9

7

5

6 8 10

cursor

parent

Removing 5

Case 3: removing a node with 1 EMPTY SUBTREE
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Removal in BST: Example

9

7

5

6 8 10

9

7

5

6 8 10

cursor

cursor

parent

o the node has no left child: link the parent of the node to the right 
(non-empty) subtree

Removing 5

after removal

Case 3: removing a node with 1 EMPTY SUBTREE

parent
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Removal in BST: Example

9

7

5

8 10

cursor

parent

Removing 5

4

Case 4: removing a node with 1 EMPTY SUBTREE
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Removal in BST: Example

9

7

5

8 10

9

7

5

8 10

cursor
cursor

parent

the node has no right child:
link the parent of the node to the left (non-empty) subtree

Case 4: removing a node with 1 EMPTY SUBTREE

Removing 5

4 4

after removal

parent
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Analysis of BST Operations

• The complexity of operations search, insert and 

remove in BST is 𝑂(ℎ) , where ℎ is the height.

• 𝑂(log 𝑛) when the tree is balanced, i.e., ℎ = 𝑂(log 𝑛). The 

updating  operations may cause the tree to become 

unbalanced.

• The tree can degenerate to a linear shape and the 

operations will become 𝑂(𝑛)
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Worst Case

Output
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Balanced BSTs

Prevent the degeneration of the BST :
• A BST can be set up to maintain balance during updating 

operations (insertions and removals)

• To achieve a worst-case runtime of 𝑂(log 𝑛) for 
searching, inserting and deleting, h = 𝑂(log 𝑛)

• Two types we’ll look at :
o AVL trees (named after inventors Adelson-Velsky and 

Landis)

o splay trees

• There are many other types of balanced BSTs: 2-4 
trees, Red-Black  trees, B-trees
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AVL Trees

• Invented in 1962 by Russian mathematicians Adelson-
Velsky and Landis

• An AVL tree is a binary search tree such that (AVL 
property):
o The height of the left and right sub-trees of the root 

differ by at most 1 (balanced)

o The left and right sub-trees are AVL trees

o treat nil tree as height -1

Which of these are AVL trees, assuming that they are BSTs?
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Valid AVL Tree

Note: it is not a requirement that all leaves be on the same 
or adjacent level
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AVL Trees: Balanced

• Aim to get a tight upper 
bound for ℎ

• Worst when the height of 
the left and right sub-trees 
of every node differs by 1

• let 𝑁ℎ = (𝑚𝑖𝑛.) # nodes in 
height-ℎ AVL tree

• 𝑁ℎ = 𝑁ℎ−1 + 𝑁ℎ−2 + 1

• > 2𝑁ℎ−2

• 𝑁ℎ > 2ℎ/2

• ℎ < 2 log 𝑁ℎ
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Based on 𝑁ℎ = 𝑁ℎ−1 + 𝑁ℎ−2 + 1, we can have 𝑁ℎ−1 as follows by replacing h with h-1

𝑁ℎ-1 = 𝑁ℎ−2 + 𝑁ℎ−3 + 1

We can plug 𝑁ℎ-1 into 𝑁ℎ, and obtain the following

𝑁ℎ = 𝑁ℎ−1 + 𝑁ℎ−2 + 1 = (𝑁ℎ−2 + 𝑁ℎ−3 + 1)+ 𝑁ℎ−2 + 1 = 2𝑁ℎ−2 + 𝑁ℎ−3 + 2

So, we have 𝑁ℎ > 2𝑁ℎ−2. We can replace h with h-2, obtaining 𝑁ℎ-2 > 2𝑁ℎ−4

We can plug the above into 𝑁ℎ > 2𝑁ℎ−2 to obtain the following

𝑁ℎ > 2𝑁ℎ−2 > 2×2𝑁ℎ−4 => 𝑁ℎ > 22𝑁ℎ−2×2 => 𝑁ℎ > 2k𝑁ℎ−2k

When h-2k = 0, i.e., k = h/2, we have

𝑁ℎ > 2h/2𝑁0 => 𝑁ℎ > 2h/2  => log(𝑁ℎ) > h/2 => 2log(𝑁ℎ) > h

With h < 2log(𝑁ℎ), we can easily get h=O(log(𝑁ℎ)) using the definition of big O.

AVL Trees: Balanced
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Rotations

Rotations maintain the ordering property of BSTs. 
A rotation is an O(1) operation
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AVL Insert

(1) insert as in simple BST

(2) walk your way up tree, restoring AVL property (and 

updating heights as you go).

• suppose x is the lowest node violating AVL

• assume x is right-heavy – right subtree has larger height 

(left case symmetric)

• two cases:

o Case 1: x’s right child is right-heavy or balanced → single left 

rotation on x

o Case 2:  else → double rotations (right rotation on right child, 

then left rotation on x)

• then continue up to x’s parent, grandparent, grandgrandparent . . .
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Case 1
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Case 2
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Example
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Balancing AVL tree
void balance( AvlNode * & t ) {  

 if( t == NIL ) return;

 if( height( t->left ) - height( t->right ) > 1)

  if( height( t->left->left ) >= height( t->left->right ) )

   rotateWithLeftChild( t );

  else

   doubleWithLeftChild( t );

 else if( height( t->right ) - height( t->left ) > 1)

  if( height( t->right->right ) >= height( t->right->left ) )

   rotateWithRightChild( t );

  else

   doubleWithRightChild( t );

  t->height = max( height( t->left ), height( t->right ) ) + 1;

}
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Balancing AVL tree

void rotateWithLeftChild( AvlNode * & k2 ) {  

 AvlNode *k1 = k2->left;

 k2->left = k1->right;  

 k1->right = k2;

 k2->height = max( height( k2->left ), height( k2->right ) ) + 1;  

k1->height = max( height( k1->left ), k2->height ) + 1;

 k2 = k1;

}
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Comments

• In general, process may need several rotations before 

done with an  Insert. 𝑂(log 𝑛) rotations may be required

• Deletion is similar — harder but possible.

• Running time for inserting each item into AVL tree? 
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Advantages/Disadvantage of AVL Trees

• Advantages

o 𝑂(log 𝑛) worst-case searches, insertions and deletions

• Disadvantages

o Complicated Implementation

➢Must keep balancing info in each node

➢To find node to balance, must go back up in the tree: easy if 

pointer to parent, otherwise  difficult

➢Deletion complicated by numerous potential rotations
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