
CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

CSCE 2110
Foundations of Data Structures

Tree

University of North Texas

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Contents

• Tree
o Tree Traversal

• Binary Trees

• Binary Search Tree (BST)

• Balanced BST
o AVL Tree

• Splay Tree (in next slide)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Nature View of a Tree

leaves

branches

root

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Computer Scientist’s View

leaves

branches

root

node

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

What is a Tree

• A tree is a finite
nonempty set of
elements.

• It is an abstract
model of a
hierarchical structure.

• It consists of nodes
with a parent-child
relation.

• Applications:

o Organization charts

o File systems

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Definition and Tree Trivia

Recursive Definition of a Tree:

• A tree is a set of nodes that is

o (a) an empty set of nodes, or

o (b) has one node called the root from which zero or more

trees (subtrees) descend.

• A tree with 𝑁 nodes always has edges

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Tree Terminology
• Root: node without parent (A)

• Siblings: nodes share the same parent

• Internal node: node with at least one child (A,
B, C, F)

• External node (leaf): node without children (E,
I, J, K, G, H, D)

• Ancestors of a node: parent, grandparent,
grand-grandparent, etc.

• Descendant of a node: child, grandchild, grand-
grandchild, etc.

• Depth of a node: number of ancestors

• Height of a node: number of edges on the
longest path from the node to a leaf

• Height/Depth of a tree: maximum depth of any
node

• Degree of a node: the number of its children

• Degree of a tree: the maximum degree of its
node.

• Subtree: tree consisting of a node and its
descendants

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

YMTT (Yet More Tree Terminology)

• Binary tree: each node has at most two children

• 𝑛-ary trere: each child has at most n children

• Complete tree: Each row of the tree is filled in left to

right before the next one is started

• How deep can a complete binary tree (with n nodes) be?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Tree ADT

• We use positions to
abstract nodes

• Query methods:

o integer size()

o boolean isEmpty()

o objectIterator
elements()

o positionIterator
positions()

o position root()

o position parent(p)

o positionIterator
children(p)

• Update methods:

o insert(p)

o delete(p)

o swapElements(p, q)

o object replaceElement(p, o)

• Additional update methods
may be defined by data
structures implementing
the Tree ADT

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

A Tree Representation

• A node is represented by
an object storing
o Element

o Parent node

o Sequence of children
nodes

// A node of N-ary tree

struct node {

char element;

node * parent;

node * child[N];

};

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

A Tree Representation

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Tree Traversals

• Walking through a tree is called a traversal

• Common kinds of traversal

o Pre-order: node, then children

o Post-order: children, then node

o In-order: left, then node, then right (specific to binary

trees)

o Level-order: nodes at depth d, nodes at depth d+1, …

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Tree Traversals

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Tree Traversals

• Pre-order:
 G D A F E M H Z
• Post-order:
 A E F D H Z M G
• In-order:
 A D E F G H M Z

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Tree Traversals

• Pre-order:
 A B D E G C F
• In-order:
 D B G E A C F
• Post-order:
 ?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Pre-Order Traversal

• Perform computation at the node, then recursively
perform computation on each child

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Pre-Order Applications

• Use when computation at node depends upon values
calculated higher in the tree (closer to root)

• Example: computing depth
o The depth of a node is the number of edges from the node

to the tree's root node

o depth(node) = 1 + depth(parent of node)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Pre-Order Example: Computing Depth of All Nodes

• Add a field depth to all nodes

• Call Depth(root,0) to set depth field

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Post-Order Traversal

• Recursively perform computation on each child, then
perform computation at node

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Post-Order Applications

• Use when computation at node depends on values
calculated lower in tree (closer to leaves)

• Example: computing height
o The height of a node is the number of edges on the longest

path from the node to a leaf.

o A leaf node will have a height of 0.

o height(node) = 1 + MAX(height(child1), … height(childk))

• Example: size of tree rooted at node
o size(node) = 1 + size(child1) + … + size(childk)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Post-Order Example: Computing Size of Tree

• Call Size(root) to compute number of nodes in tree

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Depth-First Search

• Pre-Order and Post-Order traversals are examples of
depth-first search:
o Nodes are visited deeply on left-most branches before any

nodes are visited on right-most branches

o NOTE: visiting right deeply before left would still be
depth-first - crucial idea is “go deep first”

• In DFS the nodes “being worked on” are kept on a stack
(where?)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Level-Order (Breadth-First) Traversal

• Consider task of traversing tree level-by-level from top

to bottom (alphabetic order, in example below)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Level-Order (Breadth-First) Traversal

• Consider task of traversing tree level-by-level from top

to bottom (alphabetic order, in example below)

• Which data structure can best keep track of nodes?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Level-Order (Breadth-First) Algorithm

• Put root in a Queue

• Repeat until Queue is empty:

o Dequeue a node

o Process it

o Add its children to queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Level-Order Example: Printing the Tree

• Call Print(root) to print tree contents

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example: Level-Order Queue

• Put root in a Queue

• Repeat until Queue is
empty:
o Dequeue a node

o Process it

o Add its children to
queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example: Level-Order Queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Applications of Breadth-First Search

• Find shortest path from root to a given node N

o if node N is at depth k, BFS will never visit a node at
depth > k

o important for really deep trees

• Generalizes to finding shortest paths in graphs

• Spidering the world wide web
o From a root URL, fetch pages that are farther and

farther away

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Binary Search Tree

• Binary Search Trees (BST) are a type of Binary Trees

with a special organization of data.

o Every element has a unique key.

o The keys in the nonempty left subtree (right subtree) are

smaller (larger) than the key in the root of subtree (BST

property)

o The left and right subtrees are also binary search trees.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Binary Search Trees (BST)

• Insertion: insert(val)

typedef struct BinaryNode {

 int key;

 BinaryNode *right;

BinaryNode *left;

}ptnode;

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Insertion into a BST

void insert (ptnode * & node, int key){

 if (!node){

 node = (ptnode) malloc(sizeof(ptnode));

 node->key = key;

 node->left = node->right = NULL;

} else if (key < node->key)

{

 insert(node->left, key);

} else if (key > node->key)

{

 insert(node->right, key);

}

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Finding a value in the BST if it exists: find(val)

• Follow left and right pointers until you find it or hit NULL.

Search in BST – Pseudocode

if the tree is empty
 return NULL
else if the item in the node equals the target
 return the node value
else if the item in the node is greater than the target
 return the result of searching the left subtree
else if the item in the node is smaller than the target
 return the result of searching the right subtree

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Search in a BST

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Finding the minimum element in a BST: findmin()

• How?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Key is to just go left till you cannot go left anymore.

Finding the minimum element in a BST: findmin()

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

BST Operations: Removal

• uses a binary search to locate the target item:

o starting at the root it probes down the tree till it finds the

target or reaches NULL

• removal of a node must not leave a ‘gap’ in the tree,

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST - Pseudocode

if the tree is empty return false

Attempt to locate the node containing the target using the
binary search

 if the target is not found return false

 else the target is found, so remove its node:

 Case 1: if the node has 2 empty subtrees

 ― replace the link in the parent with null

 Case 2: if the node has a left and a right subtree

 ― replace the node's value with the max value in
 the left subtree

 ― delete the max node in the left subtree

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST - Pseudocode

if the tree is empty return false

Attempt to locate the node containing the target using the
binary search

 if the target is not found return false

 else the target is found, so remove its node:

 Case 3: if the node has no left child

 ― link the parent of the node to the right (non-
 empty) subtree

 Case 4: if the node has no right child

 ― link the parent of the target to the left (non-
 empty) subtree

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

64 8 10

Case 1: removing a node with 2 EMPTY SUBTREES

parent

cursor

Removing 4

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

64 8 10

9

7

5

6 8 10

parent

cursor

Removing 4
replace the link in the
parent with null

after
removal

Case 1: removing a node with 2 EMPTY SUBTREES

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

Case 2: removing a node with 2 SUBTREES

9

7

5

6 8 10

cursor

4

Removing 7

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

6 8 10

9

6

5

8 10

cursor
cursor

o replace the node's value with the max value in the left subtree
o delete the max node in the left subtree

44

Removing 7

after removal

Case 2: removing a node with 2 SUBTREES

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

6 8 10

9

6

5

8 10

cursor
cursor

44

Removing 7

What element else
can be used as
replacement?

o replace the node's value with the max value in the left subtree
o delete the max node in the left subtree

Case 2: removing a node with 2 SUBTREES

after removal

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

6 8 10

cursor

parent

Removing 5

Case 3: removing a node with 1 EMPTY SUBTREE

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

6 8 10

9

7

5

6 8 10

cursor

cursor

parent

o the node has no left child: link the parent of the node to the right
(non-empty) subtree

Removing 5

after removal

Case 3: removing a node with 1 EMPTY SUBTREE

parent

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

8 10

cursor

parent

Removing 5

4

Case 4: removing a node with 1 EMPTY SUBTREE

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Removal in BST: Example

9

7

5

8 10

9

7

5

8 10

cursor
cursor

parent

the node has no right child:
link the parent of the node to the left (non-empty) subtree

Case 4: removing a node with 1 EMPTY SUBTREE

Removing 5

4 4

after removal

parent

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Analysis of BST Operations

• The complexity of operations search, insert and

remove in BST is 𝑂(ℎ) , where ℎ is the height.

• 𝑂(log 𝑛) when the tree is balanced, i.e., ℎ = 𝑂(log 𝑛). The

updating operations may cause the tree to become

unbalanced.

• The tree can degenerate to a linear shape and the

operations will become 𝑂(𝑛)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Worst Case

Output

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Balanced BSTs

Prevent the degeneration of the BST :
• A BST can be set up to maintain balance during updating

operations (insertions and removals)

• To achieve a worst-case runtime of 𝑂(log 𝑛) for
searching, inserting and deleting, h = 𝑂(log 𝑛)

• Two types we’ll look at :
o AVL trees (named after inventors Adelson-Velsky and

Landis)

o splay trees

• There are many other types of balanced BSTs: 2-4
trees, Red-Black trees, B-trees

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

AVL Trees

• Invented in 1962 by Russian mathematicians Adelson-
Velsky and Landis

• An AVL tree is a binary search tree such that (AVL
property):
o The height of the left and right sub-trees of the root

differ by at most 1 (balanced)

o The left and right sub-trees are AVL trees

o treat nil tree as height -1

Which of these are AVL trees, assuming that they are BSTs?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Valid AVL Tree

Note: it is not a requirement that all leaves be on the same
or adjacent level

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

AVL Trees: Balanced

• Aim to get a tight upper
bound for ℎ

• Worst when the height of
the left and right sub-trees
of every node differs by 1

• let 𝑁ℎ = (𝑚𝑖𝑛.) # nodes in
height-ℎ AVL tree

• 𝑁ℎ = 𝑁ℎ−1 + 𝑁ℎ−2 + 1

• > 2𝑁ℎ−2

• 𝑁ℎ > 2ℎ/2

• ℎ < 2 log 𝑁ℎ

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Based on 𝑁ℎ = 𝑁ℎ−1 + 𝑁ℎ−2 + 1, we can have 𝑁ℎ−1 as follows by replacing h with h-1

𝑁ℎ-1 = 𝑁ℎ−2 + 𝑁ℎ−3 + 1

We can plug 𝑁ℎ-1 into 𝑁ℎ, and obtain the following

𝑁ℎ = 𝑁ℎ−1 + 𝑁ℎ−2 + 1 = (𝑁ℎ−2 + 𝑁ℎ−3 + 1)+ 𝑁ℎ−2 + 1 = 2𝑁ℎ−2 + 𝑁ℎ−3 + 2

So, we have 𝑁ℎ > 2𝑁ℎ−2. We can replace h with h-2, obtaining 𝑁ℎ-2 > 2𝑁ℎ−4

We can plug the above into 𝑁ℎ > 2𝑁ℎ−2 to obtain the following

𝑁ℎ > 2𝑁ℎ−2 > 2×2𝑁ℎ−4 => 𝑁ℎ > 22𝑁ℎ−2×2 => 𝑁ℎ > 2k𝑁ℎ−2k

When h-2k = 0, i.e., k = h/2, we have

𝑁ℎ > 2h/2𝑁0 => 𝑁ℎ > 2h/2 => log(𝑁ℎ) > h/2 => 2log(𝑁ℎ) > h

With h < 2log(𝑁ℎ), we can easily get h=O(log(𝑁ℎ)) using the definition of big O.

AVL Trees: Balanced

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Rotations

Rotations maintain the ordering property of BSTs.
A rotation is an O(1) operation

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

AVL Insert

(1) insert as in simple BST

(2) walk your way up tree, restoring AVL property (and

updating heights as you go).

• suppose x is the lowest node violating AVL

• assume x is right-heavy – right subtree has larger height

(left case symmetric)

• two cases:

o Case 1: x’s right child is right-heavy or balanced → single left

rotation on x

o Case 2: else → double rotations (right rotation on right child,

then left rotation on x)

• then continue up to x’s parent, grandparent, grandgrandparent . . .

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Case 1

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Case 2

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Balancing AVL tree
void balance(AvlNode * & t) {

 if(t == NIL) return;

 if(height(t->left) - height(t->right) > 1)

 if(height(t->left->left) >= height(t->left->right))

 rotateWithLeftChild(t);

 else

 doubleWithLeftChild(t);

 else if(height(t->right) - height(t->left) > 1)

 if(height(t->right->right) >= height(t->right->left))

 rotateWithRightChild(t);

 else

 doubleWithRightChild(t);

 t->height = max(height(t->left), height(t->right)) + 1;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Balancing AVL tree

void rotateWithLeftChild(AvlNode * & k2) {

 AvlNode *k1 = k2->left;

 k2->left = k1->right;

 k1->right = k2;

 k2->height = max(height(k2->left), height(k2->right)) + 1;

k1->height = max(height(k1->left), k2->height) + 1;

 k2 = k1;

}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Comments

• In general, process may need several rotations before

done with an Insert. 𝑂(log 𝑛) rotations may be required

• Deletion is similar — harder but possible.

• Running time for inserting each item into AVL tree?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Advantages/Disadvantage of AVL Trees

• Advantages

o 𝑂(log 𝑛) worst-case searches, insertions and deletions

• Disadvantages

o Complicated Implementation

➢Must keep balancing info in each node

➢To find node to balance, must go back up in the tree: easy if

pointer to parent, otherwise difficult

➢Deletion complicated by numerous potential rotations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

